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knowledge update and revision [Grahne, 1998]:
correspondence with AGM revision [Giordano et al., 2005]

Ramsey test
K � {A} ` B i↵ K |= A ) B

axiomatic foundation of nonmonotonic reasoning

[Boutilier, 1994, Kraus et al., 1990] “in normal circumstances if A then B”

multi-agent revision, application to game theory

[Baltag and Smets, 2008, Board, 2004]
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Belief Revision/Epistemic logic

Multi-agent revision [Baltag and Smets, 2008, Board, 2004]

A model of epistemic interaction

A )
i

B the agent i will believe that B is true if she learns A

Beliefs of an agent i : Bel
i

A defined as > )
i

A

Knowledge of an agent i : K
i

A defined as ¬A )
i

?
The logic governing )

i

is a multi-agent version of Lewis’ V
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Plausible conditionals

Formalization of Nonmonotonic Reasoning: “typically or normally if A then B”

KLM properties universally accepted as conservative core of nonmonotonic
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set of postulates that any nonmonotonic reasoning system should satisfy
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NonMonotonic Reasoning

Example

Plausible conditionals

student ) ¬taxPayer
student ^ worker ) taxPayer

student ^ worker ^ parent ) ¬taxPayer

interpreting ) as material implication we would get for instance:
` ¬(student ^ worker)
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Language L

Alphabet

set of propositional variables V
symbols of false ? and true >
set of connectives ^, _, ¬, !, )

Formulas

Generated by the following grammar:

A,B ::= P | > | ? | ¬A | A ^ B | A _ B | A ! B | A ) B
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Semantics

Possible world semantics

a conditional A ) B is true in a world w , if B is true in the set of worlds where A is true
and that are most similar to/closest to/“as normal as” w

Lack of a universally accepted semantics

Most popular semantics (in decreasing order of generality):

selection function semantics (Stalnaker, Nute) [Nute, 1980]

preferential semantics (Lewis, Burgess) [Lewis, 1973]

sphere semantics (Lewis) [Lewis, 1973]
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Selection function semantics

Models

Triple M = (W , f , J.K)
W is a non empty set of objects called worlds

f is the selection function f : W ⇥ P(W ) �! P(W )
J.K is the evaluation function

assigns to an atom P 2 V the set of worlds where P is true
is extended to boolean formulas as usual, whereas for conditional formulas
JA ) BK = {w 2 W | f (w , JAK) ✓ JBK}

Comments

f defined taking JAK rather than A as an argument

f (w , JAK) rather than f (w , A)

equivalent to define f on formulas f (w ,A) but imposing that if JAK = JA0K in
the model, then f (w ,A) = f (w ,A

0
)

normality
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Selection Function Semantics

w

�

�

�

�

�

�

�

�
�

�

�

�

Examples

w 2 J� )  K
w 62 J� ) �K
w 62 J✓ ) �K
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The basic system CK

CK

CK is the basic system, axiomatization:

any axiomatization of the classical propositional calculus

(Modus Ponens)
A A ! B

B

(R-And) (A ) B) ^ (A ) C) ! (A ) (B ^ C))

(RCEA)
A $ B

(A ) C) $ (B ) C)

(RCK)
A ! B

(C ) A) ! (C ) B)

A is derivable in CK i↵ it is valid in every selection function model
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Some Extensions of CK

Basic extensions of CK

Other conditional systems are obtained by assuming further properties on the
selection function, for instance:

System Axiom Model condition

ID A ) A f (w , JAK) ✓ JAK
MP (A ) B) ! (A ! B) w 2 JAK ! w 2 f (w , JAK)
CS (A ^ B) ! (A ) B) w 2 JAK ! f (w , JAK) ✓ {w}

CEM (A ) B) _ (A ) ¬B) | f (w , JAK) | 1
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Proof methods

Proof theory

CLs do not have however a state of the art comparable with the one of modal logics

external calculi which make use of labels and relations on them to import the

semantics into the syntax

[Artosi et al., 2002, Olivetti et al., 2007, Giordano et al., 2009]

internal calculi which stay within the language, so that a “configuration”

(sequent, tableaux node...) can be directly interpreted as a formula of the

language [Gent, 1992, de Swart, 1983, Schröder et al., 2010,

Pattinson and Schröder, 2011]
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Proof methods

Proof theory

CLs do not have however a state of the art comparable with the one of modal logics

external calculi which make use of labels and relations on them to import the

semantics into the syntax

[Artosi et al., 2002, Olivetti et al., 2007, Giordano et al., 2009]

internal calculi which stay within the language, so that a “configuration”

(sequent, tableaux node...) can be directly interpreted as a formula of the

language [Gent, 1992, de Swart, 1983, Schröder et al., 2010,

Pattinson and Schröder, 2011]
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Proof methods

Proof theory

CLs do not have however a state of the art comparable with the one of modal logics

external calculi which make use of labels and relations on them to import the

semantics into the syntax

[Artosi et al., 2002, Olivetti et al., 2007, Giordano et al., 2009]

internal calculi which stay within the language, so that a “configuration”

(sequent, tableaux node...) can be directly interpreted as a formula of the

language [Gent, 1992, de Swart, 1983, Schröder et al., 2010,

Pattinson and Schröder, 2011]
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External Calculi

SeqS for CK (with Nicola and Camilla Schwind)

Labels used to represent possibile worlds

Language L + alphabet of labels {x , y , z , . . . }
2 kinds of labelled formulas:

world formulas x : A

transition formulas x

A�! y

representing:

A holds in the world x

y 2 f (x , JAK)
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External Calculi

SeqS for CK

Axioms
�, x : ? ` � �, x : P ` �, x : P

Propositional rules, e.g.

� ` �, x : A �, x : B ` �

�, x : A ! B ` �

�, x : A ` �, x : B

� ` �, x : A ! B

For transition formulas

u : A0 ` u : A u : A ` u : A0

(EQ)
�, x

A�! y ` �, x
A

0
�! y
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SeqS for CK

Conditional on the right (y new label)

�, x
A�! y ` �, y : B

() R)
� ` �, x : A ) B

y new

Conditional on the left

�, x : A ) B ` �, x
A�! y �, x : A ) B, y : B ` �

() L)
�, x : A ) B ` �
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Extensions of CK
ID

�, x
A�! y , y : A ` �

(ID)
�, x

A�! y ` �

MP

� ` �, x
A�! x, x : A

(MP)
� ` �, x

A�! x
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Theorem provers for Conditional Logics

Common ideas

Prolog implementation of calculi (sequent/tableaux)

inspired by leanTAP: each axiom or rule of the calculi is implemented by a
Prolog clause of the program

simple and compact code

proof search provided for free by depth-first mechanism+backtracking of
Prolog
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Theorem provers for Conditional Logics

Common ideas

Prolog implementation of calculi (sequent/tableaux)

inspired by leanTAP: each axiom or rule of the calculi is implemented by a
Prolog clause of the program

simple and compact code

proof search provided for free by depth-first mechanism+backtracking of
Prolog
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Theorem provers for Conditional Logics

Common ideas

Prolog implementation of calculi (sequent/tableaux)

inspired by leanTAP: each axiom or rule of the calculi is implemented by a
Prolog clause of the program

simple and compact code

proof search provided for free by depth-first mechanism+backtracking of
Prolog
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Theorem provers for Conditional Logics

Common ideas

Prolog implementation of calculi (sequent/tableaux)

inspired by leanTAP: each axiom or rule of the calculi is implemented by a
Prolog clause of the program

simple and compact code

proof search provided for free by depth-first mechanism+backtracking of
Prolog
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CondLean

CondLean (with Nicola)

Sequents � ` � are pairs of Prolog lists Gamma, Delta

Gamma and Delta are Prolog list representing multiset of formulas

Formulas:

[x,a,y] represents x
A�! y

[x,a] represents x : A

atomic formulas are represented by Prolog constants
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CondLean

Predicate prove

Calculi implemented by the predicate prove

prove(Cond, Gamma, Delta, Labels, Tree) succeeds if and only if
� ` � is derivable in CK (or extensions)

Labels = list of labels occurring in the current branch

if prove succeeds, then Tree matches a term representing the derivation

Cond used for termination

How it works

First, if � ` � is an axiom, then the goal will immediately succeed by using a
clause of the axioms

If it is not, then the first applicable rule will be chosen, and prove is
recursively invoked on the premise(s) of the rule

Ordering of the clauses: branching and non-invertible rules are postponed
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Design of CondLean

Clause implementing axiom

prove( ,Gamma,Delta, ,tree(ax)):-

member([X,P],Gamma),

member([X,P],Delta).

�, x : P ` �, x : P

No recursive calls to prove
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Design of CondLean

Clause implementing () R)

prove(Cond,Gamma,Delta,Labels,tree(condR,SubTree)):-

select([X,A => B],Delta,NewDelta), !,

generateNewLabel(Labels,Y),

prove(Cond,[[X,A,Y]|Gamma],[[Y,B]|NewDelta],[Y|Labels],SubTree).

�, x
A�! y ` �, y : B

() R)
� ` �, x : A ) B

generateNewLabel introduces a new label y in the current branch;

Invertible rule: Prolog cut ! is used to eventually block backtracking.

Gian Luca Pozzato Proof Methods and Theorem Proving for nonclassical logics



Conditional Logics
Nonmonotonic Description Logics

Conclusions

Introduction
External Calculi for CLs
CondLean
Internal Calculi for CLs
NESCOND
Internal Calculi for Lewis CLs
VINTE

Design of CondLean

Clause 1 implementing () L)

prove(Cond,Gamma,Delta,Labels,tree(condL,Sub1,Sub2)):-

member([X,A => B],Gamma),

select([[X, A=>B],Used],Cond,NewCond),

member([X,C,Y],Gamma),

\+member([X,C,Y],Used), !,

prove([[[X,A=>B],[[X,C,Y]|Used]]|NewCond],Gamma,[[X,A,Y]|Delta],Labels,Sub1),

prove([[[X,A=>B],[[X,C,Y]|Used]]|NewCond],[[Y,B]|Gamma],Delta,Labels,Sub2).

�, x : A ) B ` �, x
A�! y �, x : A ) B , y : B ` �

() L)
�, x : A ) B ` �

In order to ensure termination, Cond keeps trace of formulas x
C�! y already

used to apply () L) to x : A ) B

It contains pairs [[X,A=>B],Used], where Used is the list of transitions
already used Gian Luca Pozzato Proof Methods and Theorem Proving for nonclassical logics
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Design of CondLean

Clause 2 implementing () L)

prove(Cond,Gamma,Delta,Labels,tree(condL,Sub1,Sub2)):-

member([X,A => B],Gamma),

\+member([[X, A=>B], ],Cond),

member([X,C,Y],Gamma),

prove([[[X,A=>B],[[X,C,Y]]]|Cond],Gamma,[[X,A,Y]|Delta],Labels,Sub1),

prove([[[X,A=>B],[[X,C,Y]]]|Cond],[[Y,B]|Gamma],Delta,Labels,Sub2).

�, x : A ) B ` �, x
A�! y �, x : A ) B , y : B ` �

() L)
�, x : A ) B ` �

First application of () L) to x : A ) B
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Design of CondLean

Free-variable version of () L)

prove(Cond,Gamma,Delta,Labels,tree(condL,Sub1,Sub2)):-

member([X,A => B],Gamma),

domain([Y],1,Max),

Y#>X,

prove([[[X,A=>B],YDomain]|Cond],Gamma,[[X,A,Y]|Delta],Labels,Sub1,Max),

prove([[[X,A=>B],YDomain]|Cond],[[Y,B]|Gamma],Delta,Labels,Sub2,Max).

�, x : A ) B ` �, x
A�! y �, x : A ) B , y : B ` �

() L)
�, x : A ) B ` �

y is not fixed, but it is a free-variable

labels are integer, and Max is the highest value in the current branch

Library clpfd is used to manage free-variables domains
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Design of CondLean

Heuristic version

� ` �, x
A�! y �, y : B ` �

() L)
�, x : A ) B ` �

Not-invertible version of () L)

Heuristic:

Phase 1: not complete calculus with not-invertible () L)

Phase 2: in case of a failure, free-variable version is executed
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CondLean
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Internal Calculi

Nested Sequents (1) (with Nicola and Régis Alenda)

Nested sequents = generalization of ordinary sequents where sequents may occur within
sequents

A special case of deep-inference calculi (Guglielmi and co-workers)

A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

]

n,m � 0

A1, . . . ,Am

,B1, . . . ,Bn

are formulas

�1, . . . , �n

are nested sequents

Nested Sequents (2) [Alenda et al., 2013]

Internal calculi: a nested sequent corresponds to a formula of the language

replace “,” by _ and “:” by )
interpretation of � = A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

] inductively defined by

F(�) = A1 _ . . . _ A

m

_ (B1 ) F(�1)) _ . . . _ (B
n

) F(�
n

))
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Internal Calculi

Nested Sequents (1) (with Nicola and Régis Alenda)

Nested sequents = generalization of ordinary sequents where sequents may occur within
sequents

A special case of deep-inference calculi (Guglielmi and co-workers)

A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

]

n,m � 0

A1, . . . ,Am

,B1, . . . ,Bn

are formulas

�1, . . . , �n

are nested sequents

Nested Sequents (2) [Alenda et al., 2013]

Internal calculi: a nested sequent corresponds to a formula of the language

replace “,” by _ and “:” by )
interpretation of � = A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

] inductively defined by

F(�) = A1 _ . . . _ A

m

_ (B1 ) F(�1)) _ . . . _ (B
n

) F(�
n

))
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Internal Calculi

Nested Sequents (1) (with Nicola and Régis Alenda)

Nested sequents = generalization of ordinary sequents where sequents may occur within
sequents

A special case of deep-inference calculi (Guglielmi and co-workers)

A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

]

n,m � 0

A1, . . . ,Am

,B1, . . . ,Bn

are formulas

�1, . . . , �n

are nested sequents

Nested Sequents (2) [Alenda et al., 2013]

Internal calculi: a nested sequent corresponds to a formula of the language

replace “,” by _ and “:” by )
interpretation of � = A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

] inductively defined by

F(�) = A1 _ . . . _ A

m

_ (B1 ) F(�1)) _ . . . _ (B
n

) F(�
n

))
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Internal Calculi

Nested Sequents (1) (with Nicola and Régis Alenda)

Nested sequents = generalization of ordinary sequents where sequents may occur within
sequents

A special case of deep-inference calculi (Guglielmi and co-workers)

A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

]

n,m � 0

A1, . . . ,Am

,B1, . . . ,Bn

are formulas

�1, . . . , �n

are nested sequents

Nested Sequents (2) [Alenda et al., 2013]

Internal calculi: a nested sequent corresponds to a formula of the language

replace “,” by _ and “:” by )
interpretation of � = A1, . . . ,Am

, [B1 : �1], . . . , [Bn

: �
n

] inductively defined by

F(�) = A1 _ . . . _ A

m

_ (B1 ) F(�1)) _ . . . _ (B
n

) F(�
n

))
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Nested Sequents [Alenda et al., 2013]

Rules of Nested Sequents [Alenda et al., 2013]

�(P, ¬P ) (AX) (AX>)�(>)

�(A ^ B) �(¬(A ^ B))

�(A _ B) �(¬(A _ B))

�(A)

�(¬A) �(¬B)

�(B)

�(A, B)

�(¬A, ¬B)

�(A ) B) �(¬(A ) B), [A0 : �])

�(¬(A ) B), [A0 : �, ¬B])�([A : B]) A, ¬A0

�([A : �])

�([A : �, ¬A])

�([A : �], [B : ⌃])

�([A : �, ⌃], [B : ⌃]) A, ¬B B, ¬A

(^+) (^�)

(_�)(_+)

()+) ()�) (ID)

(CEM)

�(A ! B) �(¬(A ! B))

�(¬A, B) �(A)
(!+) (!�)

(¬)

P 2 ATM

�(¬(A ) B))

�(¬(A ) B), A) �(¬(A ) B), ¬B)
(MP )

�(A)

�(¬¬A)

A0, ¬A

�(¬B)

�(¬?) (AX?)
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NESCOND

Implementation of nested sequent calculi (with Nicola and Régis Alenda)

Prolog list
[F 1, F 2, ..., F m,[[A 1,Gamma 1],AppliedConditionals 1],

[[A 2,Gamma 2],AppliedConditionals 2], ..., [[A n,Gamma n],AppliedConditionals n]] ]

List items are either formulas or contexts

Context: pair [Context,AppliedConditionals]

Context is also a pair [F,Gamma] (F formula and Gamma is a nested sequent)

AppliedConditionals is a Prolog list [A 1=>B 1,A 2=>B 2,...,A k=>B k],

keeping track of the negated conditionals to which the rule ()�) has been

already applied by using Context in the current branch (to implement the

restriction on ()�) for termination)
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NESCOND

Auxiliary predicates

3 predicates to manipulate formulas “inside” a sequent:

deepMember(+Formulas,+NS) succeeds if and only if either (i) NS contains all

the fomulas in Formulas or (ii) there exists a context

[[A,Delta],AppliedConditionals] in NS such that

deepMember(Formulas,Delta) succeeds

deepSelect(+Formulas,+NS,-NewNS) (as deepMember, but replacing

formulas in NS with a placeholder hole)

fillTheHole(+NS,+Formulas,-NewNS) replaces hole in NS with the formulas

in Formulas
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NESCOND

Auxiliary predicates

3 predicates to manipulate formulas “inside” a sequent:

deepMember(+Formulas,+NS) succeeds if and only if either (i) NS contains all

the fomulas in Formulas or (ii) there exists a context

[[A,Delta],AppliedConditionals] in NS such that

deepMember(Formulas,Delta) succeeds

deepSelect(+Formulas,+NS,-NewNS) (as deepMember, but replacing

formulas in NS with a placeholder hole)

fillTheHole(+NS,+Formulas,-NewNS) replaces hole in NS with the formulas

in Formulas
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NESCOND

Auxiliary predicates

3 predicates to manipulate formulas “inside” a sequent:

deepMember(+Formulas,+NS) succeeds if and only if either (i) NS contains all

the fomulas in Formulas or (ii) there exists a context

[[A,Delta],AppliedConditionals] in NS such that

deepMember(Formulas,Delta) succeeds

deepSelect(+Formulas,+NS,-NewNS) (as deepMember, but replacing

formulas in NS with a placeholder hole)

fillTheHole(+NS,+Formulas,-NewNS) replaces hole in NS with the formulas

in Formulas
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NESCOND

Auxiliary predicates

3 predicates to manipulate formulas “inside” a sequent:

deepMember(+Formulas,+NS) succeeds if and only if either (i) NS contains all

the fomulas in Formulas or (ii) there exists a context

[[A,Delta],AppliedConditionals] in NS such that

deepMember(Formulas,Delta) succeeds

deepSelect(+Formulas,+NS,-NewNS) (as deepMember, but replacing

formulas in NS with a placeholder hole)

fillTheHole(+NS,+Formulas,-NewNS) replaces hole in NS with the formulas

in Formulas
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NESCOND

Main predicate

Calculi NS implemented by the predicate

prove(NS,ProofTree).

success in case list NS is derivable

if succeeds, the output term ProofTree matches with a representation of the
derivation found by the prover, used in order to display the proof tree
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NESCOND

Main predicate

Calculi NS implemented by the predicate

prove(NS,ProofTree).

success in case list NS is derivable

if succeeds, the output term ProofTree matches with a representation of the
derivation found by the prover, used in order to display the proof tree
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Example

Check the validity of (A ) (B ^ C )) ! (A ) B)

Query NESCOND with the goal prove([(a => b ^ c) -> (a =>

b)],ProofTree).

Clauses for the axioms

prove(NS,tree(ax)):-deepMember([P,!P],NS),!.

prove(NS,tree(axt)):-deepMember([top],NS),!.

prove(NS,tree(axb)):-deepMember([!bot],NS),!.
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NESCOND

The whole procedure

To search a derivation of a nested sequent �, NESCOND proceeds as follows:

first of all, if � is an axiom, the goal will succeed immediately by using one of

the clauses for the axioms

if � is not an instance of the axioms, then the first applicable rule will be

chosen, and NESCOND will be recursively invoked on its premises. The

ordering of the clauses is such that the application of the branching rules is

postponed as much as possible.
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Clause for the rule ()�)

prove(NS,tree(condn,A,B,Sub1,Sub2,Sub3)):-

deepSelect([!(A => B),[[C,Delta],AppliedConditionals]],NS,NewNS),

\+member(!(A => B),AppliedConditionals),

prove([A,!C],Sub2),

prove([C,!A],Sub3),!,

fillTheHole(NewNS,[!(A => B),[[C,[!B|Delta]],[!(A =>

B)|AppliedConditionals]]],DefNS),

prove(DefNS,Sub1).

�(¬(A ) B), [C : �, ¬B]) A, ¬C C , ¬A
()�)

�(¬(A ) B), [C : �])
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NESCOND

Web Application

http://www.di.unito.it/~pozzato/nescond/index.html
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Internal Calculi for Lewis CLs (with Nicola, Marianna, Bjoern)

Lewis’s CLs

counterfactual reasoning

Comparative plausibility operator (primitive): A 4 B , “A is at least as
plausible as B”

the two connectives 4 and ) are interdefinable:

A ) B ⌘ (? 4 A) _ ¬(A ^ ¬B 4 A)

A 4 B ⌘ ((A _ B) ) ?) _ ¬((A _ B) ) ¬A)

Axiomatization

classical axioms and rules

if B ! (A1 _ . . . _ A

n

) then (A1 4 B) _ . . . _ (A
n

4 B)

(A 4 B) _ (B 4 A)

(A 4 B) ^ (B 4 C) ! (A 4 C)

A ) B ⌘ (? 4 A) _ ¬(A ^ ¬B 4 A)
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Internal calculi IV for comparative plausibility

Internal calculus for V

Idea: extend the language by another “connective” which encodes several
4-formulas into one

Basic constituent of sequents are blocks representing disjunctions of
4-formulas:

[A1, . . . ,Am

C A]

(A1 4 A) _ (A2 4 A) _ · · · _ (A
m

4 A)

Blocks

Compact encoding:

� ` �0, [⌃1 C A1] , . . . , [⌃n

C A

n

] :=
^

� !
_

�0 _
_

1in

_

B2⌃
i

(B 4 A

i

)
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The invertible calculi I i
L

Rules of I i
V

Axioms, rules for the implication:

�,? ` �
?

L �, p ` �, p
init

�,B ` � � ` �,A

�,A ! B ` �
!

L

�,A ` �,B

� ` �,A ! B

!
R

Rules for the comparative plausibility operator:

� ` �, [A C B]

� ` �,A 4 B

4
R

�,A 4 B ` �, [B,⌃ C C ] �,A 4 B ` �, [⌃ C A] , [⌃ C C ]

�,A 4 B ` �, [⌃ C C ]
4i

L

Rules for blocks:

� ` �, [⌃1,⌃2 C A] , [⌃2 C B] � ` �, [⌃1 C A] , [⌃1,⌃2 C B]

� ` �, [⌃1 C A] , [⌃2 C B]
comi

A ` ⌃
� ` �, [⌃ C A]

jump
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The invertible calculi I i
L

Rules for extensions of V
� ` �, [? C >]

� ` �
N

�,A 4 B ` �,B

�,A 4 B ` � Ti
� ` �, [⌃ C A] ,⌃

� ` �, [⌃ C A]
Wi

�,A 4 B ` �,B �,A 4 B,A ` �

�,A 4 B ` � Ci
�4,B ` �4, [⌃ C B] ,⌃

� ` �, [⌃ C B]
Ai

�4 ` �4 = � ` � restricted to formulas of the form C 4 D and blocks

I i
VN := I i

V [ {N} I i
VW := I i

V [ {N,Ti,Wi} I i
VA := I i

V [ {Ai}
I i
VT := I i

V [ {N,Ti} I i
VC := I i

V [ {N,Ti,Wi,Ci} I i
VNA := I i

V [ {N,Ai}
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Design of VINTE

Program VINTE (with Nicola, Marianna, Bjoern, Vitalis Quentin

Sequent � ` � represented with a pair of Prolog lists [Gamma,Delta]

Elements of Gamma are formulas

Elements of Delta: either formulas or pairs [Sigma,A] where Sigma is a Prolog list

> and ? represented by constants true and false

connectives ¬, ^, _, ), 4, and > represented by -, ^, ?, ->, <, and =>

Propositional variables are represented by Prolog atoms

Example

[ [-(p?q), p, p -> q, p < r], [q, p => (q ^ r), [ [true, p, q], r] ] ]

represents the sequent

¬(P _ Q),P ,P ! Q,P 4 R ` Q,P ) (Q ^ R), [>,P ,Q C R]
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Design of VINTE

The calculi I i
L are implemented by the predicate

prove([Gamma,Delta],ProofTree).

The predicate prove

Succeeds if and only if � ` � represented by [Gamma,Delta] is derivable;

When it succeeds, the output term ProofTree matches with a representation
of the derivation found by the prover.

Example

Is (A 4 B) _ (B 4 A) valid in V?

Query VINTE with the goal:

prove([[],[(a<b)?(b<a)]],ProofTree).
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Design of VINTE

To search a derivation (1)

Each clause of prove implements an axiom or rule of I i
L

if � ` � is an instance of either ?
L

or >
R

or init, the goal will succeed
immediately by using one of the clauses for the axioms;

Clauses for the axioms

prove([Gamma,Delta],tree(axb):-member(false,Gamma),!.

prove([Gamma,Delta],tree(axt)):-member(true,Delta),!.

prove([Gamma,Delta],tree(init)):-member(P,Gamma),member(P,Delta),!.

�, ? ` �
?

L � ` �, > >
R �, p ` �, p

init
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Design of VINTE

To search a derivation (2)

If � ) � is not an axiom, the first applicable rule will be chosen;

VINTE will be recursively invoked on premise(s) of selected rule;

Ordering of the clauses: the application of the branching rules is postponed as
much as possible (exception: jump).
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Design of VINTE

Clause implementing 4
R

prove([Gamma,Delta],tree(precR,[Gamma,Delta],SubTree,no)):-

select(A<B,Delta,NewDelta),\+memberOrdSet([[A],B],Delta),!,

prove([Gamma,[[[A],B]|NewDelta]],SubTree).

� ` �, [A C B]

� ` �,A 4 B

4
R

memberOrdSet([Sigma, A], Delta) succeeds i↵ Delta contains a block
[Psi, A] such that Sigma ✓ Psi;

Invertible rule: Prolog cut ! is used to eventually block backtracking.

Gian Luca Pozzato Proof Methods and Theorem Proving for nonclassical logics



Conditional Logics
Nonmonotonic Description Logics

Conclusions

Introduction
External Calculi for CLs
CondLean
Internal Calculi for CLs
NESCOND
Internal Calculi for Lewis CLs
VINTE

Design of VINTE

Clause implementing 4i
L

prove([Gamma,Delta],tree(precL,Sub1,Sub2)):-

member(A < B,Gamma),

select([Sigma,C],Delta,NewDelta),

remove duplicates([B|Sigma],NewSigma),

\+memberOrdSet([NewSigma,C],Delta),

\+memberOrdSet([Sigma,A],Delta), !,

prove([Gamma,[[NewSigma,C]|NewDelta]],Sub1),

prove([Gamma,[[Sigma,A]|Delta]],Sub2).

�,A 4 B ` �, [B ,⌃ C C ] �,A 4 B ` �, [⌃ C A] , [⌃ C C ]

�,A 4 B ` �, [⌃ C C ]
4i

L

remove duplicates([B|Sigma], NewSigma) invoked to remove duplicated
formulas in the list B ,⌃
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Design of VINTE

Clause implementing jump

prove([Gamma,Delta],tree(jump,SubTree)):-

member([Sigma,A],Delta),

prove([[A],Sigma],SubTree).

A ` ⌃
� ` �, [⌃ C A]

jump

Prolog cut ! is missing, since jump is the only non-invertible rule.
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VINTE

Web Application

http://193.51.60.97:8000/vinte/
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Description Logics

Description Logics

Important formalisms of knowledge representation

Two key advantages:

well-defined semantics based on first-order logic

good trade-o↵ between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
TBox=inclusion relations among concepts

Footballer v Athlete

ABox= instances of concepts and roles = properties and relations among
individuals

Footballer(paul)
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Description Logics

Reasoning

TBox = taxonomy of concepts

need of representing prototypical properties and of reasoning about defeasible inheritance

integration with nonmonotonic reasoning mechanism to handle defeasible inheritance
(default rules, circumscription, MKNF)

all these methods present some di�culties

Our solution (with Nicola, Laura Giordano, Valentina Gliozzi)

DLs + typicality operator T for defeasible reasoning in DLs

meaning of T: (for any concept C) T(C) singles out the “typical” instances of C

semantics of T defined by a set of postulates that are a restatement of
Kraus-Lehmann-Magidor axioms of preferential or rational logic
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Reasoning

TBox = taxonomy of concepts

need of representing prototypical properties and of reasoning about defeasible inheritance

integration with nonmonotonic reasoning mechanism to handle defeasible inheritance
(default rules, circumscription, MKNF)

all these methods present some di�culties

Our solution (with Nicola, Laura Giordano, Valentina Gliozzi)

DLs + typicality operator T for defeasible reasoning in DLs

meaning of T: (for any concept C) T(C) singles out the “typical” instances of C

semantics of T defined by a set of postulates that are a restatement of
Kraus-Lehmann-Magidor axioms of preferential or rational logic
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The logic ALC + TRaCl
R

Basic notions

A KB comprises assertions T(C) v D

T(Student) v FacebookUsers means “normally, students use Facebook”

T is nonmonotonic

C v D does not imply T(C) v T(D)
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The logic ALC + TRaCl
R

Basic notions

A KB comprises assertions T(C) v D

T(Student) v FacebookUsers means “normally, students use Facebook”

T is nonmonotonic

C v D does not imply T(C) v T(D)
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The logic ALC + TRaCl
R

Example

SumoWrestler v Athlete

T(Athlete) v ¬Fat
T(SumoWrestler) v Fat

Reasoning

ABox:

Athlete(paul)

Expected conclusions:

¬Fat(paul)
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The logic ALC + TRaCl
R

Example

SumoWrestler v Athlete

T(Athlete) v ¬Fat
T(SumoWrestler) v Fat

Reasoning

ABox:

Athlete(paul)

Expected conclusions:

¬Fat(paul)
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The logic ALC + TRaCl
R

Example

SumoWrestler v Athlete

T(Athlete) v ¬Fat
T(SumoWrestler) v Fat

Reasoning

ABox:

Athlete(paul), SumoWrestler(paul)

Expected conclusions:

Fat(paul)
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The logic ALC + TRaCl
R

Example

SumoWrestler v Athlete

T(Athlete) v ¬Fat
T(SumoWrestler) v Fat

Reasoning

ABox:

Athlete(paul), SumoWrestler(paul)

Expected conclusions:
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The logic ALC + T

Semantics

M = h�, <, .Ii

� is the domain

for each concept C , CI ✓ �, and for each role R R

I ✓ �⇥�
< is an irreflexive, transitive and well-founded relation over �:

for all S ✓ �, for all x 2 S , either x 2 Min<(S) or 9y 2 Min<(S) such that
y < x

Min<(S) = {u : u 2 S and @z 2 S s.t. z < u}

.I extended to complex concepts, e.g. (C u D)I = C

I \ D

I

Semantics of the T operator: (T(C))I = Min<(C
I)
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I \ D

I

Semantics of the T operator: (T(C))I = Min<(C
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Weakness of monotonic semantics

Logic ALC + T

The operator T is nonmonotonic, but...

The logic is monotonic

If KB |= F , then KB’ |= F for all KB’ ◆ KB

Example

in the KB of the previous slides:
if Athlete(paul) 2 ABox, we are not able to:

assume that T(Athlete)(paul)
infer that ¬Fat(paul)
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The nonmonotonic logic ALC + TRaCl
R

Minimal entailment

Preference relation among models of a KB

M1 < M2 if M1 contains less exceptional (not minimal) elements

M minimal model of KB if there is no M0 model of KB such that M0 < M

Minimal entailment

KB |=
min

F if F holds in all minimal models of KB

Nonmonotonic logic

KB |=
min

F does not imply KB’ |=
min

F with KB’ � KB
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The nonmonotonic logic ALC + TRaCl
R

Minimal entailment

Satisfiability of a KB ! satisfiability of a constraint system hS | Ui

S = {a : C | C(a) 2 ABox} [ {a R�! b | R(a, b) 2 ABox}
U = {C v D

; | C v D 2 TBox}

In order to check whether F is entailed from KB:

step 1: check the satisfiability of KB [ {¬F}
step 2: check whether each open branch B built by step 1 represents a minimal

model of the KB
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The calculus

KB � {¬F}

�

� �

� ���

PHASE 1
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The calculus

KB � {¬F}

�

� �

� ���

PHASE 1

open branches
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The calculus

KB � {¬F}
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open branch

closed branch
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The calculus
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The calculus

KB � {¬F}

�

� �

� ���

PHASE 1

�

KB

PHASE 2 � �

� � � �

� �

closed tableaux

open branch = counterexample
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The calculus

Box formulas

Idea: semantics of T specified by modal logic
interpretation of T split into two parts = x 2 (T(C))I :

1 x 2 C

I

2 there is no y 2 C

I such that y < x

Condition 2 can be represented by an additional modality ⇤, whose semantics
is given by the preference relation < interpreted as an accessibility relation:
(⇤C )I = {x 2 � | for every y 2 �, if y < x then y 2 C

I}
we get x 2 (T(C ))I if and only if x 2 (C u ⇤¬C )I
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The calculus: step 1

(Clash)
�S, x : C, x : ¬C | U�

�S, x : �R.C, x
R�! y, y : C | U�

�S, x : �R.C, x
R�! y | U�

(⇤�)
�S, x : ¬⇤¬C | U�

�S, x : �R.C | U�

�S, x : ¬C � D | U, C v DL,x�
�S | U, C v DL�

(�+)

(�+)

�S, x : ¬¬C | U�
(¬) (T+)

�S, x : T(C) | U� (T�)
�S, x : ¬T(C) | U�

�S, x : �R.C, x
R�! y, y : C | U�

if y : C �2 Sif x occurs in S and x �2 L

�S, x : ¬⇤¬C, y < x, y : C, y : ⇤¬C, SM
x!y | U� . . .�S, x : ¬⇤¬C, v1 < x, v1 : C, v1 : ⇤¬C, SM

x!v1
| U� �S, x : ¬⇤¬C, vn < x, vn : C, vn : ⇤¬C, SM

x!vn
| U�

�S, x : �R.C, x
R�! v1, v1 : C | U� �S, x : �R.C, x

R�! v2, v2 : C | U� �S, x : �R.C, x
R�! vn, vn : C | U�. . .

�S, x : C � D | U�
(�+) (��)

�S, x : ¬(C � D) | U�
(u+)

�S, x : C u D | U�

(u�)
�S, x : ¬(C u D) | U�

y new
if @z � x s.t. z �S,x:¬�¬C x and @u s.t. {u < x, u : C, u : ⇤¬C, SM

x!u} ✓ S

�vi occurring in S, x �= vi

if � �z � x s.t. z �S,x:�R.C x and � �u s.t. x
R�! u 2 S and u : C 2 S

y new

�S, x : ¬⇤¬C | U��S, x : ⇤¬C | U�

�S | U�
(cut)

x occurs in S

if x : ¬⇤¬C �2 S and x : ⇤¬C �2 S
C 2 LT

�S, x : ¬¬C, x : C | U�
x : C �2 Sif

�S, x : C u D, x : C, x : D | U�

�S, x : ¬(C u D), x : ¬C | U� �S, x : ¬(C u D), x : ¬D | U�

�S, x : C � D, x : C | U� �S, x : C � D, x : D | U� �S, x : ¬(C � D), x : ¬C, x : ¬D | U�

�S, x : T(C), x : C, x : ⇤¬C | U� �S, x : ¬T(C), x : ¬C | U� �S, x : ¬T(C), x : ¬⇤¬C | U�

{x : C, x : D} �✓ Sif

if x : ¬C �2 S x : ¬D �2 Sand

if andx : C �2 S x : D �2 S {x : ¬C, x : ¬D} �✓ Sif

x : ¬⇤¬C �2 Sif x : ¬C �2 S and{x : C, x : ⇤¬C} �✓ Sif

�vi occurring in S

�S, x : ¬> | U� �S, x : ? | U�
(Clash)?(Clash)>

(v)

Gian Luca Pozzato Proof Methods and Theorem Proving for nonclassical logics



Conditional Logics
Nonmonotonic Description Logics

Conclusions

Introduction
Introduction
Proof Methods for Nonmonotonic DLs
Theorem Prover for Nonmonotonic DLs

The calculus: step 2

(�+)
. . .

(⇤�)
. . .

(Clash)
�S, x : C, x : ¬C | U | K�

(Clash)� (Clash)��

�S | U | �� �S, x : ¬⇤¬C | U | K�

�S | U, C v DL | K�
�S, x : ¬C � D | U, C v DL,x | K�

�S, x : ¬⇤¬C | U | K, x : ¬⇤¬C�

�S, x : �R.C | U | K�

�S, x
R�! v1, v1 : C | U | K� �S, x

R�! v2, v2 : C | U | K� �S, x
R�! vn, vn : C | U | K�

x 2 D(B)

If � �u 2 D(B) s.t. x
R�! u 2 S and u : C 2 S. �vi 2 D(B)

�vi 2 D(B), x �= vi

and x �2 L

(T+)

(T�)

(cut)

if x : ¬⇤¬C �2 S and x : ⇤¬C �2 S
C 2 LT

�S, x : ⇤¬C | U | K� �S, x : ¬⇤¬C | U | K�

�S | U | K�

�S, x : ¬T(C) | U | K�

�S, x : ¬C | U | K� �S, x : ¬⇤¬C | U | K� �S, x : �R.C, x
R�! y, y : C | U | K�

�S, x : �R.C, x
R�! y | U | K�

�S, x : T(C) | U | K�

�S, x : C, x : ⇤¬C | U | K�

(�+)

if y : C �2 S

x 2 D(B)

�S, v1 : C, v1 : ⇤¬C, SM
x!v1

, x : ¬⇤¬C | U | K� �S, v2 : C, v2 : ⇤¬C, SM
x!v2

, x : ¬⇤¬C | U | K� �S, vn : C, vn : ⇤¬C, SM
x!vn

, x : ¬⇤¬C | U | K�

if x : ¬⇤¬C �2 B��

�S, x : ? | U | K� �S, x : ¬> | U | K�
(Clash)? (Clash)>

(v)

if � �u s.t. {u : C, u : ⇤¬C, SM
x!u} ✓ S
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DysToPic (with Luca Violanti)

Minimal entailment

multi-engine theorem prover for reasoning in ALC + T
min

SICStus Prolog implementation of the two-steps tableaux calculi wrapped by a Java interface
which relies on the Java RMI APIs for the distribution of the computation

“worker/employer” paradigm: the computational burden for the “employer” can be spread
among an arbitrarily high number of “workers” which operate in complete autonomy, so that
they can be either deployed on a single machine or on a computer grid
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DysToPic

Minimal entailment

Basic idea: no need for step 1 to wait for the result of one elaboration of step 2 on an open

branch, before generating another candidate branch

step 1 can be executed on a machine

every time that a branch remains open after step 1, the execution of step 2 for

this branch is performed in parallel, on a di↵erent machine

Meanwhile, the worker can carry on with the computation of step 1 potentially

generating other branches

if a branch remains open after step 2, then F is not minimally entailed from KB, so the
computation process can be interrupted early
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Future issues

Currently working on the implementation of hypersequent calculi for other
logics of the Lewis’ family (with Nicola, Marianna, Bjoern)

Currently fixing a Prótégé plugin for reasoning in nonmonotonic DLs

Alternative semantics for nonmonotonic extensions of DLs

Need of implementing reasoners for these extensions
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