Constructive decision via redundancy-free proof-search

Dominique Larchey-Wendling TYPES team, ANR TICAMORE

> LORIA – CNRS Nancy, France

Second TICAMORE meeting Marseille, Nov. 2017

Overview of the talk

- Don't be afraid, no Coq code in this talk
 - but Inductive Type Theory notations (vs. Set Theory)
- Minimal intuitionistic logic and Relevant logic
 - as simple targets (one connective) of the method
 - but implicational relevant logic is significant
- Hilbert systems and Sequent systems
 - for clean definitions and completeness theorems
 - cut-elimination
 - absorption of contraction
- Replace König's lemma and Kripke/Dickson's lemma
 - almost full relations as constructive Well Quasi Orders

Hilbert proof systems and decision

• Decidability: algorithm which decides if A has proof or not

```
\forall A, \{\texttt{inhabited}(\vdash A)\} + \{\neg\texttt{inhabited}(\vdash A)\}
```

• Decider: (proof-search) algorithm computes a proof of A (or not)

 $\forall A, (\vdash A) + (\vdash A) \rightarrow \texttt{False}$

- Hilbert systems directly translate into inductive types
- Hilbert systems are very bad for proof-search
 - ND/ λ -calculus ws. Hilbert/Combinatory Logic
 - try to program with combinators \ldots
 - find a $\mathtt{HI_proof}$ of $A \supset A$... (SKK)

$$\begin{array}{c} \hline \textbf{Contructively deciders with sequents} \\ \hline \hline A \vdash A & [id] \quad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B} & [impr] \quad \frac{\Gamma \vdash A \quad B, \Delta \vdash C}{\Gamma, \Delta, A \supset B \vdash C} & [impl] \\ \hline \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} & [cntr] \quad \frac{\Gamma \vdash B}{\Gamma, A \vdash B} & [weak] \quad \frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} & [cut] \end{array}$$

- A collection of sequent rules for each logic
 - Minimal Intuitionistic Logic = all these rules
 - Relevance Logic = no weakening (system LR1)
- Soundness/completeness wrt. Hilbert systems
 - $\text{ Hilbert proof of } \vdash A \quad \Longleftrightarrow \quad \text{sequent proof } \emptyset \vdash A$
- Problems with sequent systems
 - the [cut]-rule is like the [mp]-rule
 - the [cntr]-rule forbids well-foundedness

Decision arguments for LR2 (ii)

- every LR2 provable sequent has a redundancy-free proof
 - use Curry's lemma to remove redundancies
- redundancy-free proof-search terminates
 - every branch must be finite (Kripke's lemma)
 - the proof-search tree is finite (König lemma)
- a bunch of non-constructive arguments (see Riche 2005)
 - Kripke's lemma involves Dickson's lemma or IDP
 - König's lemma (infinite branch)
- we constructivize theses arguments in an abstract setting

- For X : Type and $R: X \to X \to \text{Prop} = \text{rel}_2 X$
- Lifted relation: x (R↑u) y = x R y ∨ u R x

 in R↑u, elements above u are forbidden in bad sequences

 full : rel₂ X → Prop and af_t : rel₂ X → Type

 ∀x, y, x R y

 full R
 full R
 full R
 ∀u, af_t(R↑u)
 af_t R
- Almost full (AF) relations = constructive WQO
 - good $R [x_0; \ldots; x_{n-1}]$ iff $\exists i \exists j, i < j < n \land x_i R x_j$
 - if $\operatorname{af}_t R$ then $\forall x : \mathbb{N} \to X, \{n : \mathbb{N} \mid \operatorname{good} R \ [x_0; \ldots; x_{n-1}]\}$
 - $\operatorname{af}_t R$, $\operatorname{af}_t S$ imply $\operatorname{af}_t(R \cap S)$ and $\operatorname{af}_t(R \times S)$ (Coquand)

- this is the intuitionistic Ramsey theorem

Kripke's lemma, constructively

• Remember

$$\Gamma \vdash A \prec_{\mathbf{R}} \Delta \vdash B \quad \text{iff} \quad A \stackrel{\text{SF}}{=} B \ \land \ \bigwedge_{f \in \text{SF}} |\Gamma|_f \prec_{\mathbf{R}}^{\mathbb{N}} |\Delta|_f$$

- when SF is finite, $\stackrel{\text{SF}}{=}$ is almost full (PHP)
- the relation $\prec_{\mathrm{R}}^{\mathbb{N}} : \mathtt{rel}_2 \mathbb{N}$ is almost full
- we get an AF relation as a (finite) intersection of AF relations
- from $af_t(\prec_R)$ we deduce every ∞ sequence have redundant pairs
- but what about König's lemma ?

- irredundant proofs have *n*-bounded height (*n* by constr. FAN)

If S_0 has a proof then it has a *n*-bounded proof

