Constructive decision via
redundancy-tree proof-search

Dominique Larchey-Wendling
TYPES team, ANR TICAMORE

LORIA — CNRS

Nancy, France

Second TICAMORE meeting
Marseille, Nov. 2017




Constructive termination of proof—search'

e How constructive ?

— Many different /competing conceptions of “constructive”

x proof backed by algorithm (intuitive)
* proof in Intui. Set Theory or Type Theory (formal)

* proof | mechanized in Coq | (or Agda) (w/o axioms)

— Post-check pen&pencil proofs are constructive (hard)

x chains of results, each of which should be constructive

e Termination of backward proof-search 7

— proof-search is well-founded (easy constructive argument)

N

— proof-search is | redundant | (Dickson’s lemma, Konig’s lemma)

~




/ Overview of the talk'

e Don’t be afraid, no Coq code in this talk
— but Inductive Type Theory notations (vs. Set Theory)

e Minimal intuitionistic logic and Relevant logic
— as simple targets (one connective) of the method

— but implicational relevant logic is significant

e Hilbert systems and Sequent systems
— for clean definitions and completeness theorems

— cut-elimination

— absorption of | contraction

e Replace Konig’s lemma and Kripke/Dickson’s lemma

\ — almost full relations as constructive Well Quasi Orders

3



/Hilbert system for (minimal) intuitionistic logic I\

e Positive implictional calculus

K] -ADB KA
~FADBDA - B

[MP]

F(ADBDC)D(ADB)D(ADC) ]

e Coq implementation, the type of proofs of A |outright liar!

Inductive HI_proof : Form — Set :=

K : VAB, FADBDA

S :VABC, F(ADBDC)D(ADB)D(ADC()
MP : VA B, FADB—FA— B

\ where “F A” := (HI_proof A). /

4




Hilbert system for (imp) relevance logic'

Inductive HR_proof : Form — Set :=

id @ VA, FADA

pfx : VABC, F(ADB)D(CD>A)D(CD>B)
comm : VABC, F(ADBD>C)D(BDADC()
cntr : VA B, F(ADADB)D(ADB)

mp : VA B, FA>DB—-FA— FB

where “F A” := (HR_proof A).

N /




/ Hilbert proof systems and decision' \

e Decidability: algorithm which decides if A has proof or not

VA, {inhabited( A)} + {—inhabited(F A)}

e Decider: (proof-search) algorithm computes a proof of A (or not)

VA,(FA)+ (F A) — False

e Hilbert systems directly translate into | inductive types

e Hilbert systems are | very bad | for proof-search

— ND/A-calculus ws. Hilbert/Combinatory Logic

— try to program with combinators ...

\ — find a HI_proof of A D A ... (SKK) /

6




/ Contructively deciders with Sequentsl \

N

AT +B I'-A BARC

id] impr]
AF A I'-ADB I'AADBFC
I'NAJA- B ' B I'-A AAFB

[entr] (weak
I'AFB AR B IAFB

[impl]

[cut]

e A collection of sequent rules for each logic
— Minimal Intuitionistic Logic = all these rules

— Relevance Logic = no weakening (system LR1)

e Soundness/completeness wrt. Hilbert systems

— Hilbert proof of F A «~ sequent proof § - A

e Problems with sequent systems

— the [cut]-rule is like the [mp]-rule /

— the [entr]-rule forbids well-foundedness

19 o

7



Backward sequent proof-search termination ?I

e Rules must have finite inverse images:

— finitely many instance for a given conclusion sequent I' - A
— remove the [cut]-rule

* algorithmic cut-elimination (see Negri&Von Plato)
* semantic cut-admissibility via phase semantics (see Okada)
e Backward application of rules well-founded 7
— at some point, backward application must stop
— cannot hold with contraction [cntr]-rule

— absorb contraction in the other rules?

N /




/ Absorbing contraction in other rules' \

e For CL, for IL with LJT (also called G4IP) (see Dyckhoff
contraction-free)

e But LJ is not well-founded:

AT FB I'NADBFA I''BFC
IAFA I'-ADB I'NADBFC

e However LJ is | redundant | (with sets instead of multisets)

— LJ has sub-formula property

— any oo proof-search branch contains a duplicated sequent

e Terminate proof-search by detecting loops (history mechanism)

— Any proof transformed into a loop-free proof

\ — Konig’s lemma + PHP /




/ Absorbing contraction in relevance logic' \

Solved by Kripke (see Riche&Meyer 99) with LR2

I'A BAFC

with condition(A D B, T, A, ©)

0, ADBFC

condition(A D B,I', A, 0) a bit complicated to state formally

— every formula # A D B can be contracted once

— A D B can be contracted twice

Rules have finite inverse image

Curry’s lemma:

— contraction 1s

height-preserving admissible

\ — hence equivalence between (cut-free) LR1 and LR2

/

10



/Review of decision argument for Relevant LR2 (1)\I

e A+ B is redundant over I' - A (denoted I' H A <gr A+ B):
— I' - A obtained from A F B by repeating [cnitr]
— A= B and for any f, [I'|, <R Al
—n<gmif (n<m)A(n=0&m=0)

e Redundancy is Well Quasi Order (WQO) (Kripke’s lemma)
— 00 seq. have redundant pairs: V(S,)n<oo, 31 < 7, S <R S

e by Ramsey’s theorem: finite direct products of WQOs is a WQO

PFA<RAFB iff AZBA A D], <} Al
fESF

\o where SF' is the finite set of sub-formulee of the initial sequent /

11



Decision arguments for LR2 (ii) I

e every LR2 provable sequent has a redundancy-free proof

— use Curry’s lemma to remove redundancies

e redundancy-free proof-search terminates
— every branch must be finite (Kripke’s lemma)

— the proof-search tree is finite (Konig lemma)

e a bunch of non-constructive arguments (see Riche 2005)
— Kripke’s lemma involves Dickson’s lemma or IDP

— Konig’s lemma (infinite branch)

e we constructivize theses arqguments in an abstract setting

N /

12




Good sequences, bad sequences and redundancy'

e For X : Type and R: X — X — Prop =rels X

Jn<oo : N— X or alist [xg;...;2n_1]
) is good if z; R z; and bad if —~(z; R ;)
— We write good R (Zn)n<oo iff i3j,2 < jAx; Rz

e Given a sequence (x,

— when i < j, (%4, x;

— We write good R [zo;...;2,—1] iff 3i3j, 1 <j <nAz; Rz,

— And bad is simply —good, i.e. contains no good pair

e If R is a redundancy relation:

— good R means there is a redundant pair

— bad R means the sequence (or list) is irredundant

N /

13




e For X : Type and R: X — X — Prop = rels
e Lifted relation: x (RTu)y=xz RyVu Rx

/ Almost full relations are inductive WQOI \

X

— in R T u, elements above u are forbidden in bad sequences

Type

Vu,af;(R 1T u)

e full : relo, X —|Prop|and af; : rels X —
Ve,y, x Ry full R
full R aft R

— if af; Rthen Vo : N — X, {n : N | good R

e Almost full (AF) relations = constructive WQO

— good R [z¢;...;x,—1] iff Fidj, i <j<nAz; Rz,
[o; - -
— af; R, af; S imply af;(RNS) and af;(R x S) (Coquand)

\ — this is the | intuitionistic Ramsey theorem

aft R

. xn—l]}

14



~

~

Kripke’s lemma, constructively'

Remember

PFA<RAFB iff AZBA A D], <} Al
feSF

when SF is finite, = is almost full (PHP)
the relation <1§{ : rels N is almost full
we get an AF relation as a (finite) intersection of AF relations

from af;(<g) we deduce every oo sequence have redundant pairs

/

but what about Konig’s lemma ¢

15



~

onig’s lemma replaced constructive FAN theorem

(&

e Weak Ko6nig’s lemma = Brouwer’s FAN thm (Schwichtenberg 05)

e Inductive FAN theorem (Fridlender 98)
— the list of choice sequences for [l1;...;1,] : list(listX):

(x1;...52,] € List_expo [l1;...51,] iff x1 € LA Az, €1,
— ifaf; R and f: N— 1list X then

{'n : N ‘ Vi € list_expo [fo;...; fn_1],g00d R l}

e Better than Konig’s lemma, we get a | uniform bound |:

— proof-search branches are choices sequences

— of the proof-search iterator: fy = [Sp|, firn = next f,

\ ~ Henextll iff 3C,Celln o - /
C

16



/ Summary of the constructive argument' \

e Different refinements on prootf:
— proof is a tree where every node is a rule instance
— n-bounded proof is a proof of height bounded by n
— minimal proof = a proof of minimal height
— everywhere minimal proof = every sub-proof is minimal

— irredundant proof = every branch is bad (not good)

e We show:
— & proof ~» § has (everywhere) minimal proof
— any everywhere minimal proof is irredundant (Curry’s lemma)

— irredundant proofs have n-bounded height (n by constr. FAN)

\ If Sp has a proof then it has a n-bounded proof /

17



/ Mechanized redundancy-free decider' \

Variables stm : Type) (rules:stm — list stm — Prop)

rules : V¢, finite _t(rules c¢))

(
(H
(sf : rels stm)(Vs,sfss)(Vrst,sfrs—sfst—sfrt)
(Hst : Ve hh,rules ¢ hh — Yh € hh,sf c h)

(<R : rels stm)

(Curry : Vs t p, proof rulest p— s <grt

—dq, proof rules s ¢ Ahtq < htp)

(Kripke : Vs,afs(<g | sfs))

Thm decider : Vs, {p | proof rules s p} + {Vp, -proof rules s p}

N /

18




/ Mechanized constructive deciders' \

e Instantiate the decider term on minimal and relevance logics
— for minimal IL, via LJ

— for relevance logic, via LR2

e For e.g. relevance logic, we proceed as:
— Hilbert to LR1, LR1 to cut-free LR1 (cut admissibility)
— cut-free LR1 to LR2 (Curry’s lemma)

— LR2 to Hilbert
— decider for LR2 (Curry’s lemma and Kripke’s lemma)

Theorem HI decider (f :Form):HI proof f + (HI_proof f — False)
Theorem HR decider (f :Form): HR proof f + (HR_proof f — False)

N

19



