
'

&

$

%

Constructive decision via
redundancy-free proof-search

Dominique Larchey-Wendling

TYPES team, ANR TICAMORE

LORIA – CNRS

Nancy, France

Second TICAMORE meeting

Marseille, Nov. 2017

1



'

&

$

%

Constructive termination of proof-search

• How constructive ?

– Many different/competing conceptions of “constructive”

∗ proof backed by algorithm (intuitive)

∗ proof in Intui. Set Theory or Type Theory (formal)

∗ proof mechanized in Coq (or Agda) (w/o axioms)

– Post-check pen&pencil proofs are constructive (hard)

∗ chains of results, each of which should be constructive

• Termination of backward proof-search ?

– proof-search is well-founded (easy constructive argument)

– proof-search is redundant (Dickson’s lemma, König’s lemma)

2



'

&

$

%

Overview of the talk

• Don’t be afraid, no Coq code in this talk

– but Inductive Type Theory notations (vs. Set Theory)

• Minimal intuitionistic logic and Relevant logic

– as simple targets (one connective) of the method

– but implicational relevant logic is significant

• Hilbert systems and Sequent systems

– for clean definitions and completeness theorems

– cut-elimination

– absorption of contraction

• Replace König’s lemma and Kripke/Dickson’s lemma

– almost full relations as constructive Well Quasi Orders

3



'

&

$

%

Hilbert system for (minimal) intuitionistic logic

• Positive implictional calculus

` A⊃B ⊃A
[K ]

` A⊃B ` A
` B

[MP ]

` (A⊃B ⊃ C)⊃ (A⊃B)⊃ (A⊃ C)
[S ]

• Coq implementation, the type of proofs of A outright liar!

Inductive HI proof : Form→ Set :=

| K : ∀A B, ` A⊃B ⊃A
| S : ∀A B C, ` (A⊃B ⊃ C)⊃ (A⊃B)⊃ (A⊃ C)

| MP : ∀A B, ` A⊃B→ ` A→ ` B
where “ ` A” := (HI proof A).

4



'

&

$

%

Hilbert system for (imp) relevance logic

Inductive HR proof : Form→ Set :=

| id : ∀A, ` A⊃A
| pfx : ∀A B C, ` (A⊃B)⊃ (C ⊃A)⊃ (C ⊃B)

| comm : ∀A B C, ` (A⊃B ⊃ C)⊃ (B ⊃A⊃ C)

| cntr : ∀A B, ` (A⊃A⊃B)⊃ (A⊃B)

| mp : ∀A B, ` A⊃B→ ` A→ ` B
where “ ` A” := (HR proof A).

5



'

&

$

%

Hilbert proof systems and decision

• Decidability: algorithm which decides if A has proof or not

∀A, {inhabited( ` A)}+ {¬inhabited( ` A)}

• Decider: (proof-search) algorithm computes a proof of A (or not)

∀A, ( ` A) + ( ` A)→ False

• Hilbert systems directly translate into inductive types

• Hilbert systems are very bad for proof-search

– ND/λ-calculus ws. Hilbert/Combinatory Logic

– try to program with combinators ...

– find a HI proof of A⊃A ... (SKK)

6



'

&

$

%

Contructively deciders with sequents

A ` A
[id ]

A,Γ ` B
Γ ` A⊃B

[impr ]
Γ ` A B,∆ ` C
Γ,∆, A⊃B ` C

[impl ]

Γ, A,A ` B
Γ, A ` B

[cntr ]
Γ ` B

Γ, A ` B
[weak ]

Γ ` A A,∆ ` B
Γ,∆ ` B

[cut ]

• A collection of sequent rules for each logic

– Minimal Intuitionistic Logic = all these rules

– Relevance Logic = no weakening (system LR1)

• Soundness/completeness wrt. Hilbert systems

– Hilbert proof of ` A ! sequent proof ∅ ` A

• Problems with sequent systems

– the [cut ]-rule is like the [mp]-rule

– the [cntr ]-rule forbids well-foundedness

7



'

&

$

%

Backward sequent proof-search termination ?

• Rules must have finite inverse images:

– finitely many instance for a given conclusion sequent Γ ` A
– remove the [cut ]-rule

∗ algorithmic cut-elimination (see Negri&Von Plato)

∗ semantic cut-admissibility via phase semantics (see Okada)

• Backward application of rules well-founded ?

– at some point, backward application must stop

– cannot hold with contraction [cntr ]-rule

– absorb contraction in the other rules?

8



'

&

$

%

Absorbing contraction in other rules

• For CL, for IL with LJT (also called G4IP) (see Dyckhoff

contraction-free)

• But LJ is not well-founded:

Γ, A ` A
A,Γ ` B

Γ ` A⊃B
Γ, A⊃B ` A Γ, B ` C

Γ, A⊃B ` C

• However LJ is redundant (with sets instead of multisets)

– LJ has sub-formula property

– any ∞ proof-search branch contains a duplicated sequent

• Terminate proof-search by detecting loops (history mechanism)

– Any proof transformed into a loop-free proof

– König’s lemma + PHP

9



'

&

$

%

Absorbing contraction in relevance logic

• Solved by Kripke (see Riche&Meyer 99) with LR2

Γ ` A B,∆ ` C
Θ, A⊃B ` C

with condition(A⊃B,Γ,∆,Θ)

• condition(A⊃B,Γ,∆,Θ) a bit complicated to state formally

– every formula 6= A⊃B can be contracted once

– A⊃B can be contracted twice

• Rules have finite inverse image

• Curry’s lemma:

– contraction is height-preserving admissible

– hence equivalence between (cut-free) LR1 and LR2

10



'

&

$

%

Review of decision argument for Relevant LR2 (i)

• ∆ ` B is redundant over Γ ` A (denoted Γ ` A ≺R ∆ ` B):

– Γ ` A obtained from ∆ ` B by repeating [cntr ]

– A = B and for any f , |Γ|f ≺N
R |∆|f

– n ≺N
R m iff (n 6 m) ∧ (n = 0⇔ m = 0)

• Redundancy is Well Quasi Order (WQO) (Kripke’s lemma)

– ∞ seq. have redundant pairs: ∀(Sn)n<∞,∃i < j,Si ≺R Sj

• by Ramsey’s theorem: finite direct products of WQOs is a WQO

Γ ` A ≺R ∆ ` B iff A
SF
= B ∧

∧
f∈SF

|Γ|f ≺
N
R |∆|f

• where SF is the finite set of sub-formulæ of the initial sequent

11



'

&

$

%

Decision arguments for LR2 (ii)

• every LR2 provable sequent has a redundancy-free proof

– use Curry’s lemma to remove redundancies

• redundancy-free proof-search terminates

– every branch must be finite (Kripke’s lemma)

– the proof-search tree is finite (König lemma)

• a bunch of non-constructive arguments (see Riche 2005)

– Kripke’s lemma involves Dickson’s lemma or IDP

– König’s lemma (infinite branch)

• we constructivize theses arguments in an abstract setting

12



'

&

$

%

Good sequences, bad sequences and redundancy

• For X : Type and R : X →X → Prop = rel2X

• Given a sequence (xn)n<∞ : N→X, or a list [x0; . . . ;xn−1]

– when i < j, (xi, xj) is good if xi R xj and bad if ¬(xi R xj)

– We write good R (xn)n<∞ iff ∃i∃j, i < j ∧ xi R xj

– We write good R [x0; . . . ;xn−1] iff ∃i∃j, i < j < n ∧ xi R xj

– And bad is simply ¬good, i.e. contains no good pair

• If R is a redundancy relation:

– goodR means there is a redundant pair

– badR means the sequence (or list) is irredundant

13



'

&

$

%

Almost full relations are inductive WQO

• For X : Type and R : X →X → Prop = rel2X

• Lifted relation: x (R ↑ u) y = x R y ∨ u R x

– in R ↑ u, elements above u are forbidden in bad sequences

• full : rel2X → Prop and aft : rel2X → Type

∀x, y, x R y

fullR

fullR

aftR

∀u, aft(R ↑ u)

aftR

• Almost full (AF) relations = constructive WQO

– good R [x0; . . . ;xn−1] iff ∃i∃j, i < j < n ∧ xi R xj

– if aftR then ∀x : N→X, {n : N | good R [x0; . . . ;xn−1]}
– aftR, aft S imply aft(R ∩ S) and aft(R× S) (Coquand)

– this is the intuitionistic Ramsey theorem

14



'

&

$

%

Kripke’s lemma, constructively

• Remember

Γ ` A ≺R ∆ ` B iff A
SF
= B ∧

∧
f∈SF

|Γ|f ≺
N
R |∆|f

• when SF is finite,
SF
= is almost full (PHP)

• the relation ≺N
R : rel2 N is almost full

• we get an AF relation as a (finite) intersection of AF relations

• from aft(≺R) we deduce every ∞ sequence have redundant pairs

• but what about König’s lemma ?

15



'

&

$

%

König’s lemma replaced constructive FAN theorem

• Weak König’s lemma = Brouwer’s FAN thm (Schwichtenberg 05)

• Inductive FAN theorem (Fridlender 98)

– the list of choice sequences for [l1; . . . ; ln] : list(listX):

[x1; . . . ;xn] ∈ list expo [l1; . . . ; ln] iff x1 ∈ l1∧ · · · ∧xn ∈ ln

– if aftR and f : N→ listX then{
n : N

∣∣ ∀l ∈ list expo [f0; . . . ; fn−1], good R l
}

• Better than König’s lemma, we get a uniform bound :

– proof-search branches are choices sequences

– of the proof-search iterator: f0 = [S0], f1+n = next fn

– H ∈ next ll iff ∃C, C ∈ ll ∧ · · · H · · ·
C

16



'

&

$

%

Summary of the constructive argument

• Different refinements on proof:

– proof is a tree where every node is a rule instance

– n-bounded proof is a proof of height bounded by n

– minimal proof = a proof of minimal height

– everywhere minimal proof = every sub-proof is minimal

– irredundant proof = every branch is bad (not good)

• We show:

– S proof  S has (everywhere) minimal proof

– any everywhere minimal proof is irredundant (Curry’s lemma)

– irredundant proofs have n-bounded height (n by constr. FAN)

If S0 has a proof then it has a n-bounded proof

17



'

&

$

%

Mechanized redundancy-free decider

Variables (stm : Type) (rules : stm→ list stm→ Prop)

(Hrules : ∀c, finite t(rules c))

(sf : rel2 stm)(∀s, sf s s)(∀r s t, sf r s→ sf s t→ sf r t)

(Hsf : ∀c hh, rules c hh→∀h ∈ hh, sf c h)

(≺R : rel2 stm)

(Curry : ∀s t p, proof rules t p→ s ≺R t

→∃q, proof rules s q ∧ ht q 6 ht p)

(Kripke : ∀s, aft(≺R ↓ sf s))

Thm decider : ∀s, {p | proof rules s p}+ {∀p,¬proof rules s p}

18



'

&

$

%

Mechanized constructive deciders

• Instantiate the decider term on minimal and relevance logics

– for minimal IL, via LJ

– for relevance logic, via LR2

• For e.g. relevance logic, we proceed as:

– Hilbert to LR1, LR1 to cut-free LR1 (cut admissibility)

– cut-free LR1 to LR2 (Curry’s lemma)

– LR2 to Hilbert

– decider for LR2 (Curry’s lemma and Kripke’s lemma)

Theorem HI decider (f : Form) : HI proof f + (HI proof f → False)

Theorem HR decider (f : Form) : HR proof f + (HR proof f → False)

19


