Multi-contextual structures and Label-free calculi for Intuitionistic Modal Logics

D. GALMICHE and Y. SALHI

LORIA - UL, Nancy, France

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

Modal Logics

- Modelling of systems : how to capture specific aspects like temporality, spatiality, resource management, etc...
 ⇒ Modalities
- Various kinds of modal logics : classical, intuitionistic, fuzzy, linear.
- Extension of classical logic with modalities : □ (necessity) and ◊ (possibility)
 - modalities interpreted in a set of worlds with an accessibility relation.
 - modal logics differ by the properties associated to the accessibility relation : reflexivity (*T*), symmetry (*B*), transitivity (4), euclidness (5).

- Intuitionistic reasoning in modal logics (Simpson 94)
- Algorithmic contents of proofs (Curry-Howard isomorphism)
- Applications in computer science :
 - Formal verification of hardware (Fairtlough et al. 94)
 - Definition of programming languages (Davies et al. 01, Murphy VII et al. 04)
 - Expressivity of properties in communicating systems (Stirling 87)

Proof theory in modal logics

Existing works and results

- Natural deduction systems in classical case but rare in intuitionistic case : problem to deal with ◊ (Simpson 94).
- Natural deduction systems satisfying normalization are based on labels.
 - Labels explicitly integrate semantic information like the accessibility relation
- Sequent calculi with labels for various modal logics (Negri 05) but without some properties like subformula property.

Problem : how to design label-free calculi with good properties for intuitionistic modal logics ?

Our approach

Definition of multi-contextual structures without labels

- Such a structure for sequent calculi in classical modal logics : deep sequent (Brünnler 09)
- No similar structure for intuitionistic modal logics with natural deduction and sequent formalisms.
- Preliminary results in IS5 : MC-sequent (Galmiche-Salhi 10)

Design of label-free calculi for intuitionistic modal logics

- Natural deduction and sequent calculi systems
- Intuitionistic modal logics obtained from the combinations of the axioms T, B, 4 and 5
- Good properties : normalization, cut-elimination, subformula properties.
- Decision procedures and syntactic proofs of decidability in some cases.

- Definition of a new multi-contextual (sequent) structure : T-sequent
- Label-free proof systems for the intuitionistic logic IK with normalization/cut-elimination property and subformula property.
- Label-free proof systems for intuitionistic modal logics obtained from the combinations of the axioms T, B, 4 and 5
 - Normalization/cut-elimination property
 - Subformula property

Decision procedures for some intuitionistic modal logics

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
 - 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

Classical modal logics (normal)

 \blacksquare Extensions of classical logic with modalities : \Box , \diamondsuit

 $A ::= p \mid \bot \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \Diamond A$

Kripke semantics : Models M = (W, R, V) with W set of worlds and R relation of accessibility.

Classical modal logics (normal)

Extensions of classical logic with modalities : \Box , \diamondsuit

 $A ::= p \mid \bot \mid A \land A \mid A \lor A \mid A \supset A \mid \Box A \mid \Diamond A$

- Kripke semantics : Models M = (W, R, V) with W set of worlds and R relation of accessibility.
- Satisfaction relation :
 - $w \vDash_{\mathcal{M}} p$ iff $p \in V(w)$
 - $w \models_{\mathcal{M}} \bot$ never
 - $w \vDash_{\mathcal{M}} A \land B$ iff $w \vDash_{\mathcal{M}} A$ and $w \vDash_{\mathcal{M}} B$
 - $w \vDash_{\mathcal{M}} A \lor B$ iff $w \vDash_{\mathcal{M}} A$ or $w \vDash_{\mathcal{M}} B$
 - $w \vDash_{\mathcal{M}} A \supset B$ iff if $w \vDash_{\mathcal{M}} A$ then $w \vDash_{\mathcal{M}} B$
 - $w \vDash_{\mathcal{M}} \Box A$ iff for all $w' \in W$, if R(w, w') then $w' \vDash_{\mathcal{M}} A$
 - $w \vDash_{\mathcal{M}} \Diamond A$ iff if there exists $w' \in W$ such that R(w, w') and $w' \vDash_{\mathcal{M}} A$

· < 同 > < 三 > < 三 >

Classical modal logics (normal)

- Classical modal models define validity in the minimal modal logic K : a formula A is valid in K iff A is valid in all classical modal models (Chellas 80)
- Other modal logics built from combinations of the axioms T, B, 4 and 5 are defined by classes of classical modal models.
- Each axiom corresponds to a property of the accessibility relation in each model :
 - (7) Reflexivity : $\forall w.R(w,w)$;
 - (B) Symmetry : $\forall w, w'. R(w, w') \supset R(w', w);$ (A) Transitivity : $\forall w, w', w', w', w'' \in \mathcal{B}(w', w') \land \mathcal{B}(w', w''))$
 - (4) Transitivity : ∀w, w', w''.(R(w, w') ∧ R(w', w'')) ⊃ R(w, w'');
 (5) Euclidness : ∀w, w', w''.(R(w, w') ∧ R(w, w'')) ⊃ R(w', w'').
- For Th ⊆ {T, B, 4, 5} the class of models defining the logics KTh, corresponds to models in which the accessibility relations satisfy the given properties

Simpson's approach (Simpson 94) :

Simpson's approach (Simpson 94) :

Simpson's approach (Simpson 94) :

Classical modal logics (normal) minus $A \lor \neg A$.

Simpson's approach (Simpson 94) :

Classical modal logics (normal) minus $A \lor \neg A$.

Relationships between IML and CML like the ones between IL and CL.

Simpson's approach (Simpson 94) :

- Classical modal logics (normal) minus $A \lor \neg A$.
- Relationships between IML and CML like the ones between IL and CL.
- Modalities are independent.

Simpson's approach (Simpson 94) :

- Classical modal logics (normal) minus $A \lor \neg A$.
- Relationships between IML and CML like the ones between IL and CL.
- Modalities are independent.
- First intuitionistic modal logics (Fitch 48, Prior 57)

Intuitionistic modal logics (normal)

- Intuitionistic reasoning associated to modal logics
- \Rightarrow Classical modal logics minus $A \lor \neg A$.
 - Kripke semantics : Models M = (W, ≤, D_{w∈W}, R_{w∈W}, V_{w∈W}) with W set of worlds and D_w set of modal worlds.

• $w \leqslant w'$ entails $D_w \subseteq D_{w'}$ & $R_w \subseteq R_{w'}$ & $V_w \subseteq V_{w'}$

Intuitionistic modal logics (normal)

- Satisfaction relation :
 - $w, d \vDash_{\mathcal{M}} p$ iff $p \in V_w(d)$
 - $w, d \models_{\mathcal{M}} \bot$ never
 - $w, d \vDash_{\mathcal{M}} A \land B$ iff $w, d \vDash_{\mathcal{M}} A$ and $w, d \vDash_{\mathcal{M}} B$
 - $w, d \vDash_{\mathcal{M}} A \lor B$ iff $w, d \vDash_{\mathcal{M}} A$ or $w, d \vDash_{\mathcal{M}} B$
 - $w, d \vDash_{\mathcal{M}} A \supset B$ iff for all $w' \ge w$, if $w', d \vDash_{\mathcal{M}} A$ then $w', d \vDash_{\mathcal{M}} B$
 - $w, d \vDash_{\mathcal{M}} \Box A$ iff for all $w' \ge w$ and for all $d' \in D_{w'}$, if $R_{w'}(d, d')$ then $w', d' \vDash_{\mathcal{M}} A$
 - $w, d \vDash_{\mathcal{M}} \Diamond A$ iff there exists $d' \in D_w$ such that $R_w(d, d')$ and $w, d \vDash_{\mathcal{M}} A$
- Monotonicity : $w \leq w'$ and $w, d \vDash A$ entails $w', d \vDash A$
- For any Th ⊆ {T, B, 4, 5} we call IKTh the intuitionistic version of the classical modal logic KTh.

Intuitionistic modal logics and proof systems

A Hilbert axiomatic system for IK (Simpson 94).

 Natural deduction system for S4 and S5 and their intuitionistic versions (Prawitz 65, Bierman-de Paiva 00)

Proof systems for intuitionistic modal logic are rare

- Labelled calculi (Dosen 86, Simpson 94) but no subformula property.
- Label-free sequent calculi for classical modal logics (Brünnler 09).
- Label-free systems for fragments without ♦ of IK, IS4 and IS5 (Ono 77, Bierman et De Paiva 2000) but cut-elimination property.

Multi-contextual structures and disjunctive property

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
 - 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

Multi-contextual structures

• Sequent :
$$A_1, \ldots, A_k \vdash C$$

 $(A_1 \land \cdots \land A_k \supset C)$

■ Hypersequent : $\Gamma_1 \vdash C_1 \mid \ldots \mid \Gamma_n \vdash C_n$ (($\land \Gamma_1 \supset C_1$) $\lor \cdots \lor (\land \Gamma_n \supset C_n$))

Deep sequent : A₁,..., A_k, [Γ₁],..., [Γ_l] with {A₁,..A_k} multiset of formulas and {Γ₁,..Γ_l} multiset of deep sequents.
 (∨ A_i ∨ □F(Γ₁) ∨ ... ∨ □F(Γ_l))

Tree-sequent (or T-sequent)

- T-context : A₁,..., A_k, ⟨Γ₁⟩,..., ⟨Γ_l⟩ with {A₁,..A_k} multiset of formulas and {Γ₁,..Γ_l} multiset of T-contexts.
 (∧ A_i ∧ ◊F(Γ₁) ∧ ... ∧ ◊F(Γ_k))
- T-sequent :
 - Γ, C^{\vdash} with Γ is a T-context $(\mathcal{F}(\Gamma) \supset C)$.
 - $\Gamma, \langle S \rangle$ with Γ is a T-context and S is a T-sequent $(\mathcal{F}(\Gamma) \supset \Box(\mathcal{F}(S)))$

T-sequent

T-sequent : a new multi-contextual structure

A T-sequent is different from a deep sequent (Brünnler 2009)

- one distinguishes one formula (the marked one)
- one deals with the two modalities \Box , \Diamond and not only with \Box .

(E) ► < E >

*n*T-contexts and inference rules

■ *n*T-context : a T-context with *n* occurrences of {} (hole).

- Notation :
$$\Gamma\{\}\cdots\{\}$$

- Hole substitution : $\Gamma\{\Delta_1\}\cdots\{\Delta_n\}$

- Example :

$$\begin{split} & \Gamma\{\} = \Box(A \supset B), \Diamond A, \langle A, \{\} \rangle \\ & \Gamma\{C, D^{\vdash}\} = \Box(A \supset B), \Diamond A, \langle A, C, D^{\vdash} \rangle \end{split}$$

Form of inference rules :

$$\frac{\Gamma\{\Delta_1^1\}\cdots\{\Delta_k^1\}\cdots\Gamma\{\Delta_k^1\}\cdots\{\Delta_k^k\}}{\Gamma\{\Delta_1\}\cdots\{\Delta_k\}} [R]$$

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

The sequent calculus $G_{IK}(1)$

- Left rules : they deal with the T-context
- Right rules : they deal with the marked formulae
- Propositional rules :

 $[id] \qquad [L]$ $\frac{\Gamma\{A_1 \land A_2, A_i\}\{C^{\vdash}\}}{\Gamma\{A_1 \land A_2\}\{C^{\vdash}\}} [\land_L^i] \qquad \frac{\Gamma\{A^{\vdash}\}}{\Gamma\{A \land B^{\vdash}\}} [\land_R]$ $\frac{\Gamma\{A \lor B, A\}\{C^{\vdash}\}}{\Gamma\{A \lor B\}\{C^{\vdash}\}} \quad [\lor_{L}] \qquad \frac{\Gamma\{A_{i}^{\vdash}\}}{\Gamma\{A_{1} \lor A_{2}^{\vdash}\}} \quad [\lor_{R}^{i}]$ $\frac{\Gamma\{A \supset B, A^{\vdash}\}\{\emptyset\} \qquad \Gamma\{A \supset B, B\}\{C^{\vdash}\}}{\Gamma\{A \supset B\}\{C^{\vdash}\}} \qquad [\supset_{L}] \qquad \frac{\Gamma\{A, B^{\vdash}\}}{\Gamma\{A \supset B^{\perp}\}} \qquad [\supset_{R}]$ $\frac{\Gamma\{A^{\vdash}\}\{\emptyset\}}{\Gamma\{\emptyset\}\{C^{\vdash}\}}$ [Cut]

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆ 臣 ● の Q @

The sequent calculus G_{IK} (2)

Modal rules :

$$\frac{\Gamma\{\langle A \rangle, \diamondsuit A\}\{C^{\vdash}\}}{\Gamma\{\Diamond A\}\{C^{\vdash}\}} [\diamondsuit_{L}] \qquad \frac{\Gamma\{\langle \Delta, A^{\vdash} \rangle\}}{\Gamma\{\langle \Delta \rangle, \diamondsuit A^{\vdash}\}} [\diamondsuit_{R}] \\
\frac{\Gamma\{\langle \Delta, A \rangle, \Box A\}}{\Gamma\{\langle \Delta \rangle, \Box A\}} [\Box_{L}] \qquad \frac{\Gamma\{\langle A^{\vdash} \rangle\}}{\Gamma\{\Box A^{\vdash}\}} [\Box_{R}]$$

$$\frac{\Gamma\{A^{\vdash}\}\{\emptyset\}}{\Gamma\{\emptyset\}\{C^{\vdash}\}} \quad [Cut]$$

臣

- ∢ ∃ →

Construction of calculi G_{IKTh} (1)

We associate to each logic IKTh, with Th \subseteq {T, B, 4, 5}, the sequent calculus G_{IKTh} that is obtained from the previous rules as follows :

- if IKTh is IS5 then G_{IKTh} is obtained from G_{IK} by replacing the rules $[\Box_L]$ and $[\diamondsuit_R]$ by the rules $[\Box_L^{IS5}]$ and $[\diamondsuit_R^{S5}]$;
- if IKTh is IB4 then G_{IKTh} is obtained from G_{IK} by replacing the rules $[\Box_L]$ and $[\diamondsuit_R]$ by the rules $[\Box_L^{IB4}]$ and $[\diamondsuit_R^{B4}]$;
- otherwise G_{IKTh} is obtained by adding to G_{IK} the rules $[\Box_L^x]$ and $[\diamondsuit_R^x]$ for all $x \in Th$.

(本部) (本語) (本語) (三語

Construction of calculi G_{IKTh} (2)

$$\begin{array}{c} \frac{\Gamma\{\Box A, A\}}{\Gamma\{\Box A\}} \ [\Box_{L}^{T}] & \frac{\Gamma\{A^{\vdash}\}}{\Gamma\{\Diamond A^{\vdash}\}} \ [\Diamond_{R}^{T}] & \frac{\Gamma\{\langle \Delta, \Box A\rangle, A\}}{\Gamma\{\langle \Delta, \Box A\rangle\}} \ [\Box_{L}^{B}] & \frac{\Gamma\{\langle \Delta\rangle, A^{\vdash}\}}{\Gamma\{\langle \Delta, \Diamond A^{\vdash}\rangle\}} \ [\Diamond_{R}^{B}] \\ \\ \frac{\Gamma\{\Delta\{A\}, \Box A\}}{\Gamma\{\Delta\{\emptyset\}, \Box A\}} \ [\Box_{L}^{4}](depth(\Delta\{\}) > 1) & \frac{\Gamma\{\Delta\{A^{\vdash}\}\}}{\Gamma\{\Delta\{\emptyset\}, \Diamond A^{\vdash}\}} \ [\Diamond_{R}^{4}](depth(\Delta\{\}) > 1) \\ \\ \frac{\Gamma\{\Box A\}\{A\}}{\Gamma\{\Box A\}\{\emptyset\}} \ [\Box_{L}^{5}](depth(\Gamma\{\}\{\emptyset\}) > 0 \ \text{and} \ depth(\Gamma\{\emptyset\}\{\}) > 0) \\ \\ \frac{\Gamma\{\emptyset\}\{A^{\vdash}\}}{\Gamma\{\Diamond A^{\vdash}\}\{\emptyset\}} \ [\Diamond_{R}^{5}](depth(\Gamma\{\}\{\emptyset\}) > 0 \ \text{and} \ depth(\Gamma\{\emptyset\}\{\}) > 0) \end{array}$$

The depth of a 1*T*-context Γ {} is defined as follows : $depth(\Gamma, \{\}) = 0$; $depth(\Gamma, \langle \Delta \{\} \rangle) = 1 + depth(\Delta \{\})$.

Construction of calculi G_{IKTh} (3)

Let S be a T-sequent, sp(S) is true iff if the depth of the tree corresponding to S is greater than 0.

Theorem [Soundness]

If a T-sequent has a preuve in G_{IKTh} then it is valid in IKTh.

Theorem [Completeness]

If a T-sequent is valid in IKTh then it has a proof in G_{IKTh} .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$G_{\rm IKTh}$ - an example of proof

 $\begin{array}{c} \hline \langle \Box A \rangle, A, A^{\vdash} & [id] \\ \hline \langle \Box A \rangle, A^{\vdash} & [\Box_{L}^{B}] \\ \hline \hline \langle \Box A \rangle, A^{\vdash} & [\diamondsuit_{L}] \\ \hline \Diamond \Box A, A^{\vdash} & [\diamondsuit_{R}] \\ \hline \hline \Diamond \Box A \supset A^{\vdash} & [\supset_{R}] \end{array}$

D. GALMICHE and Y. SALHI (LORIA)

3

$G_{\rm IKTh}$ - an example of proof

D. GALMICHE and Y. SALHI (LORIA)

3

$G_{\rm IKTh}$ - an example of proof

D. GALMICHE and Y. SALHI (LORIA)

크

▲圖▶ ▲屋▶ ▲屋▶

$G_{\rm IKTh}$ - an example of proof

D. GALMICHE and Y. SALHI (LORIA)

크

▲圖▶ ▲屋▶ ▲屋▶

$G_{\rm IKTh}$ - an example of proof

D. GALMICHE and Y. SALHI (LORIA)

크

個人 くほん くほんし

$G_{\rm IKTh}$ - an example of proof

D. GALMICHE and Y. SALHI (LORIA)

크

個人 くほん くほんし

Properties of G_{IKTh}

Theorem [Cut-elimination property]

If S is a T-sequent has a proof in G_{IKTh} then there is a proof of S without the (cut) rule.

Theorem [Subformula property]

If S is a T-sequent valid in IKTh, then there exists a proof of S in G_{IKTh}^- containing only subformulae of the formulae appearing in S.

Theorem [Depth property]

Let S be a T-sequent and D a proof of S in G^-_{IKTh} for Th $\in \{\emptyset, \{T\}, \{B\}, \{T, B\}\}$. If S' is a T-sequent in D then its depth is less or equal to d(S) + nest(S).

米間ト 米国ト 米国ト 三国

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

A preorder on T-sequents :

- Relation
$$\rightarrow_c$$
 (contraction) defined by :
 $\Gamma\{\Delta, \Delta\} \rightarrow_c \Gamma\{\Delta\}, \Gamma\{\langle \Delta, C^{\vdash} \rangle, \langle \Delta \rangle\} \rightarrow_c \Gamma\{\langle \Delta, C^{\vdash} \rangle\}.$
- Relation \rightarrow_w (weakening) defined by :
 $\Gamma\{C^{\vdash}\}\{\emptyset\} \rightarrow_w \Gamma\{C^{\vdash}\}\{\Sigma\}$ (Σ is T-context).

Preorder on T-sequents $S \lesssim S'$ defined by : $S \lesssim S'$ if and only if $S(\rightarrow_c + \rightarrow_w)^* S'$ where $(\rightarrow_c + \rightarrow_w)^*$ is the reflexive and transitive closure of the union of the two relations. $S \cong S'$ if and only if $S \lesssim S'$ and $S' \lesssim S$.

Proposition

Let \mathcal{S} and \mathcal{S}' be T-sequents such that $\mathcal{S} \lesssim \mathcal{S}'$. If $\vdash_{\mathcal{G}_{\mathsf{IKTh}}^n}^n \mathcal{S}$ then $\vdash_{\mathcal{G}_{\mathsf{IKTh}}^n}^n \mathcal{S}'$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □

A notion of redundancy with T-sequents

A derivation is said to be **redundant** if it contains two T-sequents S_1 and S_2 , with S_1 occurring strictly above S_2 in the same branch, such that $S_1 \lesssim S_2$. It is said to be **irredundant** if it is not redundant

Proposition [Irredundant proof]

For all Th \subseteq {*T*, *B*, 4, 5}, if a T-sequent is valid in IKTh, then it has an irredundant proof in G_{IKTh}^- .

Proposition [Finite partition]

Let S be a T-sequent, Th $\in \{\emptyset, \{T\}, \{B\}, \{T, B\}\}$ and \mathcal{D} be a derivation of S in G^-_{IKTh} . The set of all T-sequents appearing in \mathcal{D} is partitioned into a finite set of equivalence classes by \cong .

Then the set \mathcal{B} of all branches of all T-sequents appearing in \mathcal{D} is finite.

A decision procedure for IKTh with Th $\in \{\emptyset, \{T\}, \{B\}, \{T, B\}\}$, that is based on G_{IKTh}^- calculus and the search of an irredundant proof of the given T-sequent.

Let \mathcal{S} be a T-sequent.

- **Step** 1. We start with the derivation containing only S which is the unique irredundant derivation of size 1. If this derivation is a proof then we return it. Otherwise we move to the next step.

- **Step** i + 1. We build the set of all the irredundant derivations of size i + 1. If this set contains a proof of S then we return it. Otherwise if this set is empty then S is not valid, else we move to the next step.

Correctness : from Proposition [Irredundant proof] and soundness and completeness of the T-sequent calculus.

Termination : from Proposition [Finite partition] and there is only a finite number of rule applications that extend the size from i to i + 1.

An example (in IK{T}) **Step 1** : $Der_1 = \{ \diamondsuit \Box A \supset A^{\vdash} \}$

An example (in IK{*T*}) **Step 1** : $Der_1 = \{ \Diamond \Box A \supset A^{\vdash} \}$ **Step 2** : $Der_2 = \{ \overline{\Diamond \Box A \supset A^{\vdash}} [\supset_R] \}$

An example (in $IK\{T\}$) **Step 1** : $Der_1 = \{ \Diamond \Box A \supset A^{\vdash} \}$ $\textbf{Step 2}: \textit{Der}_2 = \{ \begin{array}{c} \diamondsuit \square A, A^{\vdash} \\ \diamondsuit \square A \supset A^{\vdash} \end{array} [\supset_R] \}$ $\frac{\diamondsuit \Box A, \langle \Box A \rangle, A^{\vdash}}{\diamondsuit \Box A, A^{\vdash}} [\diamondsuit_{L}]$ Step3 : $Der_{3} = \{ \begin{array}{c} \diamondsuit \Box A, A^{\vdash} \\ \hline \diamondsuit \Box A \supset A^{\vdash} \end{array} [\supset_{R}] \}$

An example (in $IK\{T\}$) **Step 1**: $Der_1 = \{ \Diamond \Box A \supset A^{\vdash} \}$ $\textbf{Step 2}: \textit{Der}_2 = \{ \begin{array}{c} \diamondsuit \square A, A^{\vdash} \\ \diamondsuit \square A \supset A^{\vdash} \end{array} [\supset_R] \}$ $\frac{\diamondsuit \Box A, \langle \Box A \rangle, A^{\vdash}}{\diamondsuit \Box A, A^{\vdash}} [\diamondsuit_{L}]$ Step3 : $Der_{3} = \{ \begin{array}{c} \diamondsuit \Box A, A^{\vdash} \\ \hline \diamondsuit \Box A \supset A^{\vdash} \\ \hline \diamondsuit \Box A \\ \end{bmatrix} \}$ $\frac{\frac{\Diamond \Box A, \langle \Box A, A \rangle, A^{\vdash}}{\Diamond \Box A, \langle \Box A \rangle, A^{\vdash}} [\Box_{L}^{T}]}{\frac{\Diamond \Box A, \langle \Box A \rangle, A^{\vdash}}{\Diamond \Box A, A^{\vdash}} [\Diamond_{L}]}$ $\text{Step 4 : } Der_{4} = \{$ 32 / 41

D. GALMICHE and Y. SALHI (LORIA)

An example (in $IK{T}$)

The derivations of size 5 that we can obtain from the derivation in Der₄ are :

$$\frac{\langle \Box A, \langle \Box A, A, A \rangle, A^{\vdash}}{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \frac{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}}{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Diamond_{L}]} \xrightarrow{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \frac{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}}{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \frac{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}}{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, \langle \Box A, A \rangle, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, A \cup A, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, A \cup A, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, A \cup A, A^{\vdash}} [\Box_{L}^{T}]} \xrightarrow{\langle \Box A, A^{\vdash}} [\Box_{R}]} \xrightarrow{\langle \Box A, A \cup A, A^{\vdash}} [\Box_{R}]}$$

Redundancies :

$$\begin{array}{l} \diamond \Box A, \langle \Box A, A, A \rangle, A^{\vdash} \lesssim \diamond \Box A, \langle \Box A, A \rangle, A^{\vdash} \mbox{ et } \\ \diamond \Box A, \langle \Box A \rangle, \langle \Box A, A \rangle, A^{\vdash} \lesssim \diamond \Box A, \langle \Box A, A \rangle, A^{\vdash}. \end{array}$$

We deduce that $\Diamond \Box A \supset A^{\vdash}$ is not valid in IK{T}

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

A Multi-contextual Structure : MC-sequent

A MC-sequent is a multi-contextual structure of the form :

 $\Gamma_1;\ldots;\Gamma_k\vdash\Gamma\vdash C$

- $\forall i \in [1, k], \Gamma_i$ multi-sets of formulae (Contexts)
- Γ is a multi-set of formulae (Current context)
- *C* is a formula (Conclusion)
- Corresponding formula :

$$(\diamondsuit(\bigwedge \Gamma_1) \land \ldots \land \diamondsuit(\bigwedge \Gamma_k)) \supset ((\bigwedge \Gamma) \supset C)$$

- Spatial distribution of the assumptions
- MC-sequents are not hypersequents :

A sequent calculus for IS5

Axioms and right rules of G_{IS5}

• Axioms :
$$G \vdash \Gamma, A \vdash A$$
 [*Id*] $G \vdash \Gamma, \bot \vdash C$ [\bot^1] $G \colon \Gamma', \bot \vdash \Gamma \vdash C$ [\bot^2]

Two cut rules : $\frac{G \vdash \Gamma \vdash A}{G \vdash \Gamma \vdash C} \xrightarrow{G \vdash \Gamma, A \vdash C} [Cut^{1}] \qquad \frac{G; \Gamma \vdash \Gamma' \vdash A}{G; \Gamma' \vdash \Gamma \vdash C} \xrightarrow{G; \Gamma', A \vdash \Gamma \vdash C} [Cut^{2}]$

■ Right rules :

$$\frac{G \vdash \Gamma \vdash A}{G \vdash \Gamma \vdash A \land B} [\land_R] = \frac{G \vdash \Gamma \vdash A}{G \vdash \Gamma \vdash A \lor B} [\lor_R^1]$$

$$\frac{G \vdash \Gamma \vdash A \land B}{G \vdash \Gamma \vdash A \lor B} [\lor_R^2] = \frac{G \vdash \Gamma \land A \vdash B}{G \vdash \Gamma \vdash A \supset B} [\supset_R]$$

$$\frac{G; \Gamma \vdash \vdash A}{G \vdash \Gamma \vdash \Box A} [\Box_R] = \frac{G \vdash \Gamma \vdash A}{G \vdash \Gamma \vdash \Diamond A} [\diamondsuit_R^1] = \frac{G; \Gamma \vdash \Gamma' \vdash A}{G; \Gamma' \vdash \Gamma \vdash \Diamond A} [\diamondsuit_R^2]$$

12

E ► < E ► ...</p>

A sequent calculus for IS5

Left rules of G_{IS5}

Two kinds of left rules (L-rules and LL-rules) :

・ロト ・聞ト ・ヨト ・ヨト … ヨ

A sequent calculus for IS5

Properties of the G_{IS5} calculus :

- Soundness and completeness of G_{IS5} for IS5.
- Cut-elimination property and subformula property.
- New decision procedure for IS5
 - A preorder on MC-sequent
 - A notion of redundant derivation
 - Decision : search of irredundant proof of the MC-sequent
- New syntactic proof of decidability for IS5

Plan

1 Introduction

- 2 Classical and Intuitionistic Modal Logics
- 3 A new multi-contextual structure : Tree-sequent
- 4 A label-free sequent calculus for IK and IKTh
- 5 T-sequent calculi and decidability
- 6 MC-sequent and IS5
- 7 Conclusion and perspectives

Conclusion and perspectives

- A new structure : T-sequent
- Label-free sequent calculi for intuitionistic modal logics based on *T*, *B*, 4 et 5
- Cut-elimination property and subformula property
- Decision procedures in some cases

More details in Journal of Logic and Computation, 2015

- A new structure : MC-sequent
- Label-free sequent calculi for IS5
- Cut-elimination property and subformula property
- A decision procedure for IS5

More details in LPAR proceedings, 2010

Conclusion and perspectives

New results of decidability (syntactic proofs)

- \blacksquare IK{4} and IS4 : another structure, another notion of redundancy
- IK{5}, IK{4,5} and IB4 : variants of T-sequent or MC-sequent.
- New decision procedures and improvements of existing ones
- Complexity of proof-search in intuitionistic modal logics
- Study of proof-theory in intermediate logics
- Combination of proof-search with countermodel generation in intutionistic modal logics.